Nitrite Control over Dissimilatory Nitrate/Nitrite Reduction Pathways in Shewanella loihica Strain PV-4.

نویسندگان

  • Sukhwan Yoon
  • Robert A Sanford
  • Frank E Löffler
چکیده

Shewanella loihica strain PV-4 harbors both a functional denitrification (NO3 (-)→N2) and a respiratory ammonification (NO3 (-)→NH4 (+)) pathway. Batch and chemostat experiments revealed that NO2 (-) affects pathway selection and the formation of reduced products. Strain PV-4 cells grown with NO2 (-) as the sole electron acceptor produced exclusively NH4 (+). With NO3 (-) as the electron acceptor, denitrification predominated and N2O accounted for ∼90% of reduced products in the presence of acetylene. Chemostat experiments demonstrated that the NO2 (-):NO3 (-) ratio affected the distribution of reduced products, and respiratory ammonification dominated at high NO2 (-):NO3 (-) ratios, whereas low NO2 (-):NO3 (-) ratios favored denitrification. The NO2 (-):NO3 (-) ratios affected nirK transcript abundance, a measure of denitrification activity, in the chemostat experiments, and cells grown at a NO2 (-):NO3 (-) ratio of 3 had ∼37-fold fewer nirK transcripts per cell than cells grown with NO3 (-) as the sole electron acceptor. In contrast, the transcription of nrfA, implicated in NO2 (-)-to-NH4 (+) reduction, remained statistically unchanged under continuous cultivation conditions at NO2 (-):NO3 (-) ratios below 3. At NO2 (-):NO3 (-) ratios above 3, both nirK and nrfA transcript numbers decreased and the chemostat culture washed out, presumably due to NO2 (-) toxicity. These findings implicate NO2 (-) as a relevant modulator of NO3 (-) fate in S. loihica strain PV-4, and, by extension, suggest that NO2 (-) is a relevant determinant for N retention (i.e., ammonification) versus N loss and greenhouse gas emission (i.e., denitrification).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.

A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as th...

متن کامل

Dissimilatory nitrate reduction by Propionibacterium acnes.

Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH stron...

متن کامل

Production of Manganese Oxide Nanoparticles by Shewanella Species.

UNLABELLED Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to...

متن کامل

Facilitated extracellular electron transfer of Shewanella loihica PV-4 by antimony-doped tin oxide nanoparticles as active microelectrodes.

Dissimilatory metal reducing bacteria are capable of extracellular electron transfer (EET) to insoluble metal oxides as external electron acceptors for their anaerobic respiration, which is recognized as an important energy-conversion process in natural and engineered environments, such as in mineral cycling, bioremediation, and microbial fuel/electrolysis cells. However, the low EET efficiency...

متن کامل

Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus.

Here, we investigate the functionality of the oxygen-responsive nitrogen regulation system NreABC in the human pathogen Staphylococcus aureus and evaluate its role in anaerobic gene regulation and virulence factor expression. Deletion of nreABC resulted in severe impairment of dissimilatory nitrate and nitrite reduction and led to a small-colony phenotype in the presence of nitrate during anaer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 10  شماره 

صفحات  -

تاریخ انتشار 2015